Communications to the editor

UTILIZATION OF ¹³C.¹³C COUPLING IN STRUCTURAL AND BIOSYNTHETIC STUDIES. XI.¹⁾ BIOSYNTHETIC STUDIES OF COARCTATIN

Sir:

Coarctatin $(I)^{2}$ is a metabolite of the fungus Chaetomium coarctatum. Notwithstanding its structural similarity to radicinin, which is formed by the condensation of only acetic acid molecules,3) a somewhat different biosynthetic pathway (four acetic units plus two C₁ units) for the main framework of I has been proposed by TURNER et al.²⁾ However, another pathway involving, for example, the incorporation of propionic acid molecules into C-9, 6 and 5, and C-10, 4 and 3, may operate in the formation of I. A recent report on the incorporation of propionic acid into a fungal metabolite aurovertin⁴⁾ prompted us to investigate the biosynthesis of I by ¹³C-nmr spectroscopy.

The required ¹³C assignments for I was made as follows and the chemical shifts are listed in Table 1. The assignments of protonated resonances due to C-2, 7, 8 and 9 were obtained easily based on splitting patterns in the off-resonance

Table I. ¹³C-Nmr chemical shifts and coupling constants of coarctatin.

Carbon	δc(ppm) ^{b)}	Jc-c(Hz)
8 q ^a)	14.6	42
11 q	57.6	
9 t	64.9	
2 d	89.3	80
4 s	99.2	67
6 s	119.8	63
7 d	138.7	42
10 s	162.6	
5 s	163.5	64
1 s	164.3	81
3 s	169.9	67

Determined on a JEOL FX-100 spectrometer at 25.05 MHz spectral width; 5 KHz, pulse angle; $\sim 70^{\circ}$, data points; 16 K.

- multiplicity of off-resonance decoupling.
 s; singlet, d; doublet, t; triplet, q; quartet.
- ⁽¹⁾ ppm downfield from internal TMS.

spectrum, chemical shifts and selective proton decoupling experiments. In view of the difference of solvents used*, the result is in agreement with that reported by TURNER *et al.*²⁾ However, the assignments of the remaining quaternary sp² carbons were not so straightforward. Of these, four at 169.9, 164.3, 163.5 and 162.6 ppm** were assigned to sp² carbons bearing oxygen and therefore, the rest two at 99.2 and 119.8 ppm were due to those unsubstituted by oxygen.

In the α -pyron system with oxygen substituents at β - and δ -positions, carbonyl carbons and the oxygenated ones absorb at the same region in the ¹³C-nmr spectra.^{2,5)} Therefore, the differentiation of these carbons from each other was made by long range selective proton decoupling (LSPD) experiments⁶⁾ and by use of ¹³C-¹³C coupling patterns observed in I labeled with ¹³CH₃¹³COONa.

Irradiation at H-2(δ_{II} 5.95) collapsed a signal at 164.3 ppm to a sharp singlet which appeared as a broad peak in the proton coupled spectrum. Likewise, the unresolved resonance at 169.9 ppm was perturbed by the irradiation at CH₃O (δ_{II} 4.10). Thus, these signals were assigned to C-1 and C-3, respectively. Saturation of H-9 (δ_{II} 5.25) led to an inconclusive result, since it eliminated long range couplings from both the signals at 162.6 and 163.5 ppm. In the ¹³C-nmr spectrum of ¹³CH₃¹³COONa enriched I, (Fig. 1) two pairs

* In the structural studies on I, a mixed solvent (CDCl₃ supplemented with CF₃CO₂H) was used for the measurements of ¹³C-nmr spectra.²⁾ In our experiments, however, CF₃CO₂H was replaced by CCl₃CO₂H (CCl₃CO₂H - CDCl₃, 1 : 1) to eliminate strong quartet peaks due to CF₃CO₂H.

** ¹³C-Nmr spectra were obtained as reported previously¹⁾ and the chemical shifts are expressed in ppm from internal TMS.

of ¹³C-¹³C couplings were observed between quaternary sp² carbons. Among these, a peak at 99.2 ppm coupling to C-3 (169.9 ppm) with $J_{C-C} = 67$ Hz was unambiguously assigned to C-4. The remaining pair of resonances at 163.5 and 99.2 ppm was therefore due to C-6 and 5. C-10 was assigned to a peak at 162.6 ppm by elimination to give the total ¹⁸C assignments of I.

¹³C-Labeled samples of I were prepared by separate additions of each *ca*. 90% enriched CH₃¹³COONa, ¹³CH₃COONa, ¹³CH₃¹³COONa (diluted three fold with unlabeled sodium acetate) and H¹³COONa at the level of 15 mg/50 ml fermentation broth on 10, 11 and 12 days after inoculation. At the end of the fermentation, ¹³C-enriched I was isolated as reported previously.²)

In the ¹³C-nmr spectrum of the CH₈¹³COONa enriched I, the signal intensities of C-1, 3, 5 and 7 were increased by 8 times, whereas the resonances due to C-2, 4, 6 and 8 were enriched in the ¹³Cnmr spectrum of I labeled with ¹³CH₈COONa. The label of H¹⁸COONa was also efficiently incorporated into C-9, C-10, and C-11. Several attempts to label I with CD₈CD₂COONa (checked by mass spectrometry), however, were unsuccessful. In the ¹³C-nmr spectrum of I labeled with ¹³CH₈¹³COONa, two pairs of ¹³C-¹³C couplings, C-1,2 (J=81 Hz), and C-7,8 (J=42 Hz) were observed in addition to those explained previously. Fig. 2. Biosynthetic pathway of coarctatin (I).

Thus, it has been proved that coarctatin is biosynthesized from four acetates and three C_1 -units (Fig. 2) in the same manner as most fungal metabolites.

Haruo Seto Mariko Shibamiya Hiroshi Yonehara

Institute of Applied Microbiology The University of Tokyo Bunkyo-ku, Tokyo, Japan

(Received May 12, 1978)

References

- For Part X see, SETO, H.; Y. MIYAZAKI, K. FUJITA & N. ÖTAKE: Studies on the ionophorous antibiotics. X. The assignments of ¹³C-nmr spectrum of salinomycin. Tetrahed. Lett. 1977: 2417~2420, 1977
- BURROW, B. F.; W. B. TURNER & E. R. H. WALKER: 8-Ethylidene-7,8-dihydro-4-methoxypyrano[4,3-b]pyran-2,5-dione (coarctatin), a

metabolite of *Chaetomium coarctatum*. J. Chem. Soc. Perkin I. 1975: 999~1000, 1975

- 3) SETO, H. & S. URANO: Revised assignment of the ¹³C-nmr spectrum of radicinin. Agr. Biol. Chem. 39: 915~916, 1975
 TANABE, M.; H. SETO & L. F. JOHNSON: Biosynthetic studies with carbon-13. Carbon-13 nuclear magnetic resonance spectra of radicinin. J. Am. Chem. Soc. 92: 2157~2158, 1970
- 4) URAMOTO, M.; L. W. CARY & M. TANABE: Abstract of the Annual Meeting of The Agri-

cultural Chemical Society of Japan, p. 153, Yokohama, 1977

- TORI, K.: Carbon-13 nmr spectral studies of aloenin and its derivatives. Carbon-13 signal assignment problem of 4-methoxy-2-pyrons. Tetrahed. Lett. 1976: 1311~1314, 1976
- TAKEUCHI, S.; J. UZAWA, H. SETO & H. YONE-HARA: New ¹³C-nmr techniques applied to pentalenolactone structure. Tetrahed. Lett. 1977: 2943 ~ 2946, 1977